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Introduction 
 The first author and Junck (5) established the existence of 
coincidence points and common fixed point for mappings define on cone 
metric space in this section we obtain several fixed point theorem for 
mappings with applying conditions, defined on a cone metric spaces. 
 Let E be a real Banach space.  A subset P of E is called a cone.  
If and only of - 
1. P is closed non empty and P ≠ {0} 

2. a, b R, a, b > o, x, y  P => ax + by P,  

3. P  ( -P) = {0} 

 Give a cone PE, we define a partial ordering < with respect to P 

by x < y off y - x P.  A cone P is called normal and K70 such that for all x, 

y E. 
 =>  11 x 11 < K 11 y 11 ;  0 < x < y .......... (1.1) 
Preliminaries  
Definition (2.1) 

 Let X be a non empty set, suppose that the d : X x X -> E 
ratiesties. 

1. 0 < d (x, y)  x, y  x 

2. d (x, y) = d (y, n)  x, y  x and 
d (x, y) = 0 if  x = y 

3. d (x, y) < d (x, z) + d (z, y)  V  x, y, z  x 
 Then d is called a cone metric on X and (x, d) is called a cone 
metric space. 
Definition (2.2)  

 Let (x, d) be a cone metric space.  We say that {xn} is. 
1. a Cauchy sequence if for every C in E with C > 0 there is N such that 

for all n > N d (xn, xm) < C. 
2. a convergent sequence of for every C in E with C > 0 there is N such 

that for all n > N cd (xn, n) < C for some x in X. 
 A cone metric space X is said to be complete of every Cauchy 
sequence in X is convergent in X.  It is know that {xn} converges to x < X off 

d(xn, x) -> 0 as n -> . 
Definition (2.3) 

 Let f and g be self maps of a set X if W = f (x) = g (x) for some x in 
X then x is called a coincidence point of coincidence of f and g. 
Definition (2.4) 

 Let f and g be two self maps of a metric space X.  Then f and g 
said to be compatible of limit d (fgxn, gfxn) whenever {xn} is a sequence 
such that lim fxn = lim gxn = t <- x. 
Main Result  
Theorem 

 Let (x, d) be a complete cone metric space and P be a normal 
cone with normal constant K.  Suppose that the mappings F and T are two 
self maps of X with T (x) < F (x) satisfying the conditions. 
d (Tx, Ty) < d (Fx, Fy) + max {d (Fx, Tx), d (Fy, Ty)} + 
 c {d (Fx, Ty) + d (Fy + Tx)} ............ I 

 For all x, y  x where a, b, c > 0 and a + b + 2c < I 
 Then F and T have a coincidence point in X. Moreover, 
Coincidence value is unique.  i.e. Fp = Fq whenever Fp = Tp and = Tq (p, q 

 x) 
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mapping in cone metric space including above result M. Chandra and B.E. 
Rhoades. The main purpose of this paper fixed point theorem for 
compatible mapping in cone metric spaces. 



                                                                                                                                                    Vol-II * Issue-VIII* January- 2016 
 

 

26 

 

E: ISSN NO.: 2455-0817 

P: ISSN NO.: 2394-0344                            

Proof  

 Let xo  x since T (x) < F (x) 
 We choose x, so that y1 = Fx1 = Tn0. in 
general choose xn+1 such that yn+1 = Fxn+1 = Txn from 
(I). 
d (yn+1, yn+2) = d (Txn, Txn+1) 
< ad (Fxn, Fxn+1) + b max {d (Fxn, Txn), d (Fxn+a, 
Txn+1)} + c {d (Fxn, Txn+1) + d (Fxn+1, Txn)} 
= ad (yn, yn+1) + b max {d(yn, yn+1), d (yn+1, yn+2)} + c {d 
(yn, yn+2) + d (yn+1, yn+2)} 
= ad (yn, yn+1) + b d {d(yn+1, yn+2)} + c {d (yn, yn+2) + d 
(yn+1, yn+2)} 

( for some n d (yn+1, yn+2) > d (yn, yn+1)) 
=> [1 - (b + c)] d (yn+1, yn+2) = (a + c) d (yn, yn+1) 
=> d (yn+1, yn+2) = (a + c) / (1 - (b + c))  d (yn, yn+1) 

=> d (yn+1, yn+2) <  d (yn, yn+1) 

 Where  = (a + c) / (1 - (b + c)) < 1 Similarly 
it can be show that 

 d (yn+2, yn+3) <  d (yn+1, yn+2) 

   < 
n+1

 d (y0, y1) 
Now for any m > n 
d (ym, yn) < d (yn, yn+1) + d (yn+1, yn+2) + ................. + d 
(ym-1, ym) 

< {
n
 + 

n+1
 + ........... + 

m-1
} d (y1, y0) 

< 
n
 / (1 - )  d (y1, y0) 

=>  || d (ym, yn) || < 
n
 / (1 - )  K || d (y1, y0) || 

 (From 1.1) 
=>  d (yn, ym) -> 0  as n -> 0 
Hence {yn} is a Cauchy sequence. 
 Since X is complete then there exists Z in X 
such that P = F (z) from I 
d (Fx, Tz) < d (Fz, Fxn+1) + d (Fxn+1, Tz) 
< d (Fz, Fxn+1) + d (Txn, Tz) 
< d (Fz, Fxn+1) + a d (Fxn, Fz) + b max {d (Fxn, Txn),  
d (Fx, Tz) + c {d (Fxn, Tz) + d (Fz, Txn)} 
< d (Fz, Fxn+1) + a d (yn, P) + b max {d (yn, yn+1),  
d (Tz, Tz)} + c {d (yn, Tz) + d (Fz, yn+1)} 

 Taking the limit n ->  yields, 
d (Fz, Tz) < (b + c) d (Fz, Tz) 
From (1.1) 
|| d (Fz, Tz) || < K (b + c) || d (Fz, Tz) || 

 Now right hand side of the above inequalities 

approaches zero as n -> .  Hence the uniqueness of 
a limit in a cone metric space implies that F(z) = T(z) 
= P. 
 Now we show that F and T have a unique 

point of coincidence.  For in this case P  T(x) < F(x), 
then to establish uniqueness, suppose that q is 
another coincidence point of F and T. 
From (I) we have 
=> d (Tp, Tq) < a d (Fp, Fq) + b max {d (Fp, Tp), 
 d (Fq, Tq) + c {d (Fp, Tq) + d (Fq, Tp)} 
=> d (Tp, Tq) < (a + 2c) d (Tp, Tq) 
 This gives || d (Tp, Tq) || = 0 
 Which implies that Tp = Tq and hence Fp = 
Fq from (2.4) F and T have a unique common fixed 
point. 
Corollary 

 Let (X, d) be complete cone metric space 
and P be a normal cone with normal constant K.  
Suppose that T a self map of X satisfy (I) with F = I, 
the identity map on X.  Then T has a unique fixed 
point. 
d (Tx, Ty) < a d (x, y) + b max {d (x, Tx), d (y, Ty)} +  
c {d (x, Ty) + d (y, Tx)} 

Where x, y  X and a, b, c > 0 and a + b + 2c < 1 
then T has a fixed point in X. 
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